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Abstract

The effect of coupling between in-plane (symmetric wave) plate vibrations and the acoustic field are investigated in the

context of thin plate theory. Comparisons are made of the reflection and transmission coefficients with the results of three-

dimensional elasticity and the fluid loaded dispersion curves are considered. The response of a line driven, fluid loaded, air-

backed thin plate is calculated and it is shown that symmetric wave corrections can give contributions at leading order, for

certain ranges of angle or frequency.

Crown Copyright r 2007 Published by Elsevier Ltd. All rights reserved.
1. Introduction

The acoustic radiation and structural response of a driven elastic plate immersed in a fluid is a cornerstone
of structural acoustics. Although modern structural acoustics makes extensive use of finite element (FE) codes
and numerical techniques, most of the fundamental understanding of this problem is based on the use of shell
theory [1,2]. The foundations of this understanding were laid in the 1960s with the work of Feit [3], and
Maidanik and Kerwin [4]. Significant progress was then achieved by Crighton who, in a series of papers
through the 1980s, advocated an approach based on perturbation expansions in a fluid loading parameter, e
[5–7]. This work is summarised in his Rayleigh medal lecture [8]. Recent work has focused on extending the
frequency range of these results [9] and looking at the effects of attached inhomogeneities [10].

Most work to date has focused on shell theories that are transversely inextendable, i.e., they are based on
the Kirchoff–Love approximation that ‘‘normals to the undeformed middle surface remain straight and
normal to the deformed middle surface and suffer no extension’’ [11]. This has the consequence that the
structural response to a driving force normal to the plate is determined solely by the bending wave equation
and there is no coupling to in-plane vibrations. In this paper the effects of using a shell theory that allows
transverse extendability are considered. It is shown that in this case in-plane (symmetric wave) vibrations are
excited in the plate, both by the driving force and by coupling from the acoustic field. In most cases the effect
of these vibrations on the acoustic radiation and structural response is small and can be safely ignored
ee front matter Crown Copyright r 2007 Published by Elsevier Ltd. All rights reserved.

v.2007.05.006

980 614897; fax: +44 1980 613521.

ess: jdsmith@dstl.gov.uk

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2007.05.006
mailto:jdsmith@dstl.gov.uk


ARTICLE IN PRESS
J.D. Smith / Journal of Sound and Vibration 305 (2007) 827–842828
however, in certain ranges of angle or frequency, these effects occur at leading order and should be retained in
addition to the usual bending wave contributions.

Some effects of symmetric waves on the radiation of plates have been considered before: Rudgers et al. [12]
used a modified thick plate theory to calculate the radiation from a variety of metallic and polymeric plates.
The computations are based on the analysis of Feit [3] and radiation at the coincidence angle for symmetric
waves is demonstrated. The approach used here is similar to Crighton’s [8], and the aim is to understand how
the symmetric wave corrections lead to significant effects at all frequencies despite, on the face of it, appearing
to be higher order corrections. By deriving the thin plate equations in a consistent way it can be seen that any
shell theory that uses the Kirchoff–Love approximation as its basis will contain no coupling between the
acoustic field and the symmetric plate waves when the shell approximates a flat plate. This has implications for
the types of shell theory that should be used for deriving shell elements in FE analyses of structural acoustic
problems.

The paper is divided as follows: Section 2 derives the plate equations for a forced, fluid loaded thin flat plate
from a variational principle. Section 3 then uses these plate equations to derive expressions for the reflection
and transmission coefficients of an elastic plate fully immersed in a fluid. Here exact results from the full elastic
theory are easy to obtain and the results of the thin shell theory are compared with both the full theory and the
result of keeping only the bending wave contribution. Section 4 looks at asymptotic results for the dispersion
curves of both a fully immersed plate and of an air-backed, fluid loaded, plate. Section 5 then looks at the case
of a line driven, air-backed, fluid loaded plate (the case usually of most interest) and calculates the acoustic
radiation and structural response.
2. The plate equations

First the plate equations for a forced, fluid loaded, flat plate are derived. The approach is based on the
variational principle of Kohn et al. [13]. This is related to Hamilton’s principle though any variational method
that satisfied the correct stress boundary condition on the surface of the plate would, in principle, give the
same result [14]. For an elastic solid with Lamé constants l, m and density r, taking up volume V with surface
qV , the steady-state action functional is given by

J ¼

Z
V

fro2UaU�a � l eaae�bb � 2m eabe�bagdV þ

Z
qV

f aU
�
a dS. (1)

The Ua are the components of the elastic displacements of the material in a Cartesian coordinate
system, with Greek indices running over the set ðx; y; zÞ. Summation over repeated indices is assumed
and ‘�’ denotes complex conjugate. Surface tractions are given by the vector field, f a, and the integrals
are over the volume and surface area, respectively. Harmonic time dependence, e�iot, is assumed throughout
the paper.

Taking the strain tensor to have its small displacement form

eab ¼ 1
2
ðqaUb þ qbUaÞ (2)

(qa standing for the partial derivative with respect to the a coordinate), the relationship between the stress
tensor, sab, and the strain is given by

sab ¼ l eggdab þ 2meab, (3)

where dab is the Kronecker delta. It is then a straightforward matter to show that minimising J with respect to
variations in the complex conjugate displacement, U�a, leads to the usual three-dimensional steady-state elastic
equations of motion

qbsab þ ro2Ua ¼ 0 (4)

together with the boundary condition

f a ¼ sabnb (5)
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on qV , which has outward unit normal na [13]. The Lamé constants can be related to the Young’s modulus, E

and Poisson’s ratio n by the relations

l ¼
En

ð1� 2nÞð1þ nÞ
and m ¼

E

2ð1þ nÞ
. (6)

If the volume V consists of two materials—one occupying volume V0 and the other V 1—with common
boundary Sc ¼ qV0 [ qV 1, then the volume integral in Eq. (1) is split into separate volume integrals for V 0

and V 1. Minimising J with respect to the complex displacements leads to integrals of the formZ
V0;1

fro2Ua þ qbsabgdU�a dV (7)

together with a surface integral over the interface between the two materialsZ
Sc

ðs0abdU�0b � s1abdU�1bÞn0a dS, (8)

where s0ab, U0b are the assumed forms for the stress tensor and displacement vector in material 0 and similarly
for material 1. Use has been made of the fact that n0a ¼ �n1a on the common boundary.

The volume integral contributions to dJ imply that the equations of motion (4) hold separately in each
material. The surface integral (8) then leads to interface conditions that must hold between the materials.
Physically it would be expected that the displacement should be continuous across the interface and hence the
variation should be restricted to trial functions that satisfy this condition. This could be enforced formally by
the addition of a Lagrange multiplier term to Eq. (1) if desired [15]. For continuous displacements, Eq. (8)
then implies that the components of the stress tensor in the direction of the surface normal must be
continuous, i.e.,

s0abn0b ¼ s1abn0b. (9)

In the case when V 0 contains a fluid, the shear modulus, m, in V 0 is taken to be zero and thus l ¼ K , which is
the bulk modulus of the fluid. Since the only contribution to the stress tensor in the fluid is through the
divergence of U, Eq. (4) can be used to show that U must have zero curl. The equation of motion in the fluid
(4) then simply becomes

r2Ua þ
o
c0

� �2

Ua ¼ 0, (10)

with c0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
K=r0

p
and the stress tensor is given by

sab ¼ KðrgU gÞdab ¼ �p dab, (11)

where p is the acoustic pressure [16]. Since Eq. (8) now only contains the components of displacement normal
to the interface, only these components need to be continuous.

It can be seen that Eqs. (10) and (9) are the usual steady-state equations of motion and interface conditions
for an acoustic fluid, which are usually derived directly from Euler’s equation and the equation of continuity
for the fluid [17]. Eq. (10) can be recast in terms of the pressure simply by taking the divergence of each side.
Hence, without any loss of generality, the variational principle (1) will be used only to obtain effective
equations for the elastic plate and any surrounding fluid will be taken to satisfy the usual Helmholtz equation
of motion and interface conditions with its only contribution to Eq. (1) being through the forces it exerts on
the surface of the plate.

To proceed, the plate is assumed to lie in the x–y plane, with mid-plane at z ¼ 0 and to have thickness 2h.
Traditional plate theory assumes that the thickness of the plate is small compared to the lateral dimensions of
the plate and the longitudinal and shear wavelengths, allowing the displacements to be expanded as a power
series in z [11]. Taking the Latin indices, i; j; k; . . ., to stand for the in-plane components ðx; yÞ, this motivates
the following ansatz for the plate displacements:

Uiðx; y; zÞ ¼ uiðx; yÞ þ zviðx; yÞ þ 1
2

z2tiðx; yÞ, (12a)
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Uzðx; y; zÞ ¼ w0ðx; yÞ þ zw1ðx; yÞ þ 1
2

z2w2ðx; yÞ. (12b)

The Kirchoff–Love approximation corresponds to taking w1 and w2 identically equal to zero [18].
The elastic strains can then be calculated to first order in z as

eij ¼
1
2
ðqiuj þ qjuiÞ þ

1
2

zðqivj þ qjviÞ, (13a)

eiz ¼ ezi ¼
1
2
ðqiw0 þ viÞ þ

1
2

zðqiw1 þ tiÞ, (13b)

ezz ¼ w1 þ zw2. (13c)

If it is assumed there is a fluid, with pressure p, filling the half-space z4h and the lower side of the plate is
driven using a normal driving force, f ðx; yÞ, then the boundary conditions on the stress in the plate are

szz ¼ �p; siz ¼ 0 at z ¼ h (14a)

and

�szz ¼ f ; siz ¼ 0 at z ¼ �h. (14b)

Using the first-order form of the strain (13) to calculate the stress then gives

vi ¼ �qiw0, (15a)

ti ¼ �qiw1, (15b)

w1 ¼ �
ðf þ pÞ

2ðlþ 2mÞ
� gqiui (15c)

and

w2 ¼
ðf � pÞ

2hðlþ 2mÞ
þ gqiqiw0, (15d)

where g ¼ l=ðlþ 2mÞ ¼ n=ð1� nÞ. The only unknowns are thus the displacements of the mid-plane of the
plate.

Substituting these results into the functional (1) and performing the integration over z leads to

J ¼
2hE

1� n2

Z
dSf�nqiuiqju

�
j � ð1� nÞðqiuj þ qjuiÞqiu

�
j

� nIqiqiw0qjqjw
�
0 � ð1� nÞIqiqjw0qiqjw

�
0 þ Oðuiu

�
i þ w0w�0Þg

þ

Z
dS½ðf � pÞw�0 þ ðf þ pÞhgqiu

�
i �. ð16Þ

The surface integral is to be taken over the area of the plate, I ¼ h2=3 is the square of the radius of gyration of
the plate and O ¼ ro2ð1� n2Þ=E. Rotary inertia terms of the form rh2=3 have been neglected.

It is now a straightforward matter to perform the variations over u�i and w�0. Setting the resulting integrals to
zero implies the plate equations

ð1þ nÞ
2

qiqjuj þ
ð1� nÞ

2
qjqjui þ k2

pui ¼
g

2rc2p
qiðf þ pÞ, (17a)

qiqiqjqjw0 � k4
bw0 ¼

1

2hrc2b
ðf � pÞ, (17b)

where c2p ¼ E=rð1� n2Þ and c2b ¼ IE=rð1� n2Þ. One thus sees that the thin plate equations are a natural
consequence of the stress satisfying the correct boundary conditions on the surfaces of the plate to first order
in h. It should be noted that the derivative term on the right-hand side of Eq. (17a) came from the U�z term in
the surface integral of Eq. (1) and would not be present if w1 had been taken to be zero.
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Taking the normal displacement to first order then gives

Uz ¼ w0 � z
f þ p

2rc2l
þ gqiui

� �
, (18)

where use has been made of the longitudinal wave speed, cl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2mÞ=r

p
. This procedure can be extended to

finite plates and curved shells.

3. The reflection and transmission coefficients

The problem of a plane wave incident on an infinite elastic plate fully immersed in a fluid is now considered.
The plate lies in the x–y plane and has its mid-plane at z ¼ 0. Surrounding the plate is a compressible fluid
with density r0 and sound speed c0, which satisfies the Hemholtz equation

r2p� þ k2
0p� ¼ 0 (19)

for the acoustic pressure, pþðxÞ for z4h and p�ðxÞ for zo� h. A plane wave of wavenumber k0 ¼ o=c0 is
incident in the z–x plane, from z ¼ 1 and at an angle y to the normal of the plate. These conditions are such
that the acoustic field and plate displacements can be considered to be independent of y and the problem is
two-dimensional. The geometry is as shown in Fig. 1.

In Section 2 it was shown that the linear response of a thin plate subjected to a normal driving force f ðxÞ on
the face at z ¼ �h, and with a pressure pðxÞ over the face at z ¼ h is determined by the plate equations

d22ux

dx2
þ k2

pux ¼
g

2rc2p

d

dx
ðf þ pÞ, (20)

d4w0

dx4
� k4

bw0 ¼
1

2hrc2b
ðf � pÞ. (21)

Eq. (20) governs the x-component (in-plane) of the displacement vector of the mid-plane of the plate; it gives a
low-frequency approximation to the lowest order symmetric wave which, in vacuum, has wavenumber kp ¼

o=cp and phase velocity cp. This equation differs from the one obtained using the Kirchoff–Love inextendable
assumption [11] by the presence of the forcing term on the right-hand side, which is proportional to
g ¼ n=ð1� nÞ. This force has a simple physical interpretation: a pressure gradient causes an in-plane
displacement in the plate through the Poisson’s ratio of the material. Thus it is absent if the plate
θ

θ

z

eiαx-i�z
Reiαx+i�z

Teiαx-i�z 

 ρ, E, ν 

ρ0 , c0

ρ0, c0

x2h

θ

Fig. 1. Geometry of the fluid-plate system showing incoming plane wave, reflected wave and transmitted wave. In Section 5 the lower fluid

half-space is replaced with a normal driving force, f ðxÞ.
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displacements are restricted to a form that allows no local change in the thickness of the plate, as measured
along the normals to the mid-plane. Eq. (21) is the usual bending wave equation, with vacuum wavenumber

kb ¼
ffiffiffiffiffiffiffiffiffiffi
o=cb

p
. If the thickness of the plate is taken to be H ¼ 2h, then cb is given by cb ¼

ffiffiffiffiffiffiffiffiffiffi
B=m

p
, where

B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EH3=12ð1� n2Þ

q
is the bending stiffness of the plate and m ¼ Hr is the mass per unit area. It should be

noted that cb is not the phase velocity of the plate: that is given by
ffiffiffiffiffiffiffiffi
ocb
p

.

In addition to the equations of motion, the correct boundary conditions must be satisfied on the faces of the plate.
The system of Eqs. (20) and (21) was derived by ensuring the displacements in the plate are such that the stress
boundary conditions on the surfaces of the plate are satisfied to order h. For consistency, the normal displacement in
the fluid at the surface of the plate should match that of the plate to the same order. In the plate, it is given by

Uz ’ w0ðxÞ � z
f þ p

2rc2l
þ g

dux

dx

� �
. (22)

When z ¼ �h this should be equal to the z-component of the displacement in the fluid which, for harmonic time
dependence e�iot, is given by

Uz ¼
1

r0o2

qp�
qz

. (23)

To find the reflection and transmission coefficients of the plate, p ¼ pþðx; hÞ and f is taken to be the force exerted on
the plate by the transmitted pressure wave, i.e., f ¼ p�ðx;�hÞ. Taking

pþ ¼ eiax�ibðz�hÞ þ Reiaxþibðz�hÞ; p� ¼ Teiax�ibðzþhÞ, (24)

with a ¼ k0 sin y and b ¼ k0 cos y, a periodic ansatz can be chosen for uxðxÞ and w0ðxÞ viz.,

ux ¼ Ueiax and w0ðxÞ ¼Weiax. (25)

Substituting this ansatz into Eqs. (20) and (21) allows the amplitudes U and W to be expressed in terms of R and T.
Setting Eq. (22) equal to Eq. (23) when z ¼ �h then leads to a pair of simultaneous equations for the reflection and
transmission coefficients. These are easily solved to obtain

R ¼
1

DADB

ðk4
b � a4Þðk2

p � a2Þ þ
2m
b

� �2

k4
bðg

2a2k2
ph2
� k2

l h2
ðk2

p � a2ÞÞ

" #
, (26)

T ¼
2im

bDADB

½k4
bðk

2
p � a2Þ � g2a2k2

ph2
ðk4

b � a4Þ þ k2
l h2
ðk4

b � a4Þðk2
p � a2Þ�, (27)

with

DA ¼ k4
b � a4 þ

2im
b

k4
b (28)

and

DB ¼ ðk
2
p � a2Þ 1�

2im
b

k2
l h2

� �
þ

2im
b
g2a2k2

ph2. (29)

The mass ratio, m ¼ r0=2hr.
Fig. 2 shows a comparison of the Insertion Loss (the square of the modulus of the transmission coefficient

expressed in dB’s) calculated from the expression (27) with that calculated using the full elastic theory [19] for a
10mm steel plate in water at 35kHz. There is a discrepancy in the position of the flexural coincidence angle (as is
well known [1]—this due to the thin plate theory over predicting the flexural wave speed at these frequencies),
however the general features are predicted well. One notes, in particular, the presence of a second coincidence angle
associated with the symmetric (in-plane) waves on the plate. This is not predicted by the usual thin plate theory.

The presence of the cusp in the Insertion Loss is due to terms of the form ðkphÞ2=ða2 � k2
pÞ which arise in the

continuity condition on the normal displacement; away from the angle defined by

yP ¼ sin�1
c0

cp

� �
, (30)
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the terms of order ðklhÞ
2 and ðkphÞ2, which came from the first-order terms in Uz, are negligible compared to

the other terms and Eq. (27) reduces to the usual thin plate theory result

T ¼
2im

1�
k0

kb

� �4

sin4 y

 !
k0 cos yþ 2im

. (31)

Near y ¼ yp however, the terms of order ðkphÞ2 cannot be ignored in comparison to the other terms, leading to
the observed cusp.

Fig. 3 shows how this feature changes as the frequency varies. There is no apparent cut-on frequency—as
would be the case with the flexural wave [1]—but it becomes broader in angle with increasing frequency and is
more obvious above the (flexural) coincidence frequency.
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ARTICLE IN PRESS
J.D. Smith / Journal of Sound and Vibration 305 (2007) 827–842834
It is convenient to define non-dimensional parameters: frequencies are scaled relative to the coincidence
frequency, oc ¼ c20=cb, thus ō ¼ o=oc. The usual fluid loading parameter, e, is given by

e ¼
r0
2hr

cb

c0
. (32)

It has the advantage that it is independent of the plate thickness and is usually small, thus being ideal for
perturbation expansions [8]. In addition, two new parameters

al ¼
h2c40
c2bc2l

and ap ¼ g2
h2c40
c2bc2p

(33)

are introduced; again, these parameters depend only on the material properties and are independent of the
plate thickness. Since g2k2

ph2
¼ apō2 and k2

l h2
¼ alō2, they are expected to be small parameters and can

usually be dropped except when they occur at leading order in an expansion.

4. The dispersion curves

The dispersion equations for the plate determine the frequency dependence of the wavenumbers of free
waves on the plate. They may be obtained by taking travelling wave solutions for ux and w0,

uxðxÞ ¼ Ueikx; w0ðxÞ ¼Weikx (34)

and assuming the acoustic field has the form

pþ ¼ Tue
ikxþibðz�hÞ for z4h, (35a)

p� ¼ Tbe
ikx�ibðzþhÞ for zo� h, (35b)

with b2 ¼ k2
0 � k2.

For real k, if kok0 (supersonic wave) the wave in the plate must couple to an outgoing acoustic wave and

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
0 � k2

q
. If k4k0, the acoustic field must decay as z!1 and b ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
� k2

0

q
. When k is complex a

branch cut must be chosen, starting from the branch point k ¼ k0, that maintains these conditions on the real
k-axis. This has been discussed many times in the literature from the point of view of the forced response (see,
for example, Ref. [5]). One can take the view that the solutions to the dispersion problem (35) have no physical
meaning except as the kernel of a Fourier transform in solving the forced response, since the solutions with
complex k must be divergent at either x ¼ �1. Nevertheless, the dispersion problem with complex k has been
studied in it’s own right for purposes such as non-destructive evaluation [20]. If one imposes the condition that
the solutions for complex k must tend smoothly to the solutions for real k as both the fluid loading and the
damping tend continuously to zero, a natural choice for the branch cut is given in Fig. 4.

Using the assumed form of the acoustic field in the continuity condition for the normal displacement at
z ¼ �h, together with the plate equations (20) and (21), leads to a matrix equation for the amplitudes of the
free waves on the plate

LUU LUW

LWU LWW

" #
U

W

� �
¼ 0, (36)

with

LUU ¼ ðk
2
� k2

pÞ 1�
2im
b

k2
l h2

� �
�

2im
b
g2k2

ph2k2, (37a)

LWW ¼ k4
� k4

b �
2im
b

k4
b (37b)

and

LUW ¼ LWU ¼ 0. (37c)
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For non-trivial solutions to exist the determinant of the matrix Lmust be zero. In this case the equations for U

and W are uncoupled leading to the dispersion equations LUU ¼ 0 and LWW ¼ 0. These relations could also be
obtained by setting the denominator of the reflection and transmission coefficients to zero.

Setting Eq. (37b) to zero leads to the dispersion relation for the fluid loaded flexural waves and has been
studied many times before (see, for example, Ref. [8]). The solutions for positive k consist of a subsonic, real
solution together with complex solutions for the evanescent and leaky waves. Significant fluid loading is
associated with ō ¼ Oðe2Þ, at which point all three terms in Eq. (37b) are significant. For completeness, we
note that, for ō41, the subsonic wave is given by

ks�k0 1þ
ð2eÞ2

2ōðō2 � 1Þ2
þOðe4Þ

� �
(38)

and the leaky wave by

k�kb 1þ
ð2eÞi

4ō1=2
ffiffiffiffiffiffiffiffiffiffiffiffi
ō� 1
p þOðe2Þ

� �
. (39)

When ōo1 with ō ¼ Oð1Þ (in the sense of Olver [21]), the subsonic wave is given by

ks�kb 1þ
ð2eÞ

4ō1=2
ffiffiffiffiffiffiffiffiffiffiffiffi
1� ō
p þOðe2Þ

� �
. (40)

None of these expressions are valid near ō ¼ 1: for a discussion of their range of validity and distinguished
scalings see Ref. [8].

For ō ¼ Oðe2Þ an approximation can be obtained for the subsonic wave in the heavy fluid loading limit
(ō ¼ e2O0 with O0 ! 0),

k ’ kb

2e
ō1=2

� �1=5

. (41)

Approximations in other regions and matching relations around the coincidence frequency can be found in
Refs. [8,9].



ARTICLE IN PRESS
J.D. Smith / Journal of Sound and Vibration 305 (2007) 827–842836
Setting Eq. (37a) to zero yields the dispersion relation for the symmetric (in-plane) plate wave. Re-writing in
terms of the scaled wavenumber, z ¼ k=kp, and the fluid loading parameter gives

ðz2 � 1Þ 1þ
2iealōffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðc0=cpÞ
2z2

q
0
B@

1
CA� 2ieapōz

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðc0=cpÞ

2z2
q ¼ 0. (42)

Treating al and ap as Oð1Þ parameters (for the moment), this can be solved approximately by taking the fluid
loading to be a perturbation ðe! 0Þ [21]. One obtains

z�1þ
ð2eÞiapō

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðc0=cpÞ

2
q þOðe2Þ�1þ ig2

2r0c0

rcp

kphffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðc0=cpÞ

2
q þOðe2Þ as e! 0 (43)

the effect of fluid loading is thus to attenuate the symmetric wave by an amount depending on the ratio of the
characteristic impedances of the plate to the fluid multiplied by kph.

When the usual inextendable plate theory is used, the case of an air-backed fluid loaded plate is identical to
that of a fully immersed plate except that it has half the fluid loading (2e is replaced by e in expressions
(38)–(41)). This is not the case, however, if the plate equations (20) and (21) are used. Setting Tb ¼ 0 in the
form for the acoustic field leads to a pair of coupled equations for the plate vibrations. Again, these can be
written in the form of a matrix equation (36) but this time LUW and LWU are non-zero. The dispersion
equation is found by setting the determinant of L equal to zero. Instead of separate dispersion relations for the
symmetric and flexural waves, the combined dispersion relation

Dðk;bÞ ¼ ðk2
� k2

pÞðk
4
� k4

bÞ 1�
im
b
alō2

� �
�

im
b

k4
bðk

2
� k2

pÞ �
im
b
apō2k2

ðk4
� k4

bÞ ¼ 0 (44)

is obtained.
The coupling between the two types of waves is small and there is no new structure in Eq. (44) as far as

flexural waves are concerned. The approximate solutions (38)–(41) still hold for Eq. (44), the effects of
coupling occurring at the next order in e. Fig. 5 shows a comparison of the subsonic and leaky wave dispersion
curves calculated using Eq. (37b) with those obtained from Eq. (44) for an air-backed steel plate in water. The
fluid loading in Eq. (37b) has been halved, in the manner of the usual plate theory, for comparison purposes
[1]. Branch (a) is the leaky wave, which tends towards kb at high frequency (39). Branch (b) is purely real and is
the subsonic wave. It tends towards k0 ¼ ō1=2kb at high frequency (38), is close to kb for frequencies below the
coincidence frequency (40), and then increases steeply as the frequency tends towards zero in the heavy fluid
loading region (41). The differences between dispersion curves calculated from the two different relations is
typically less than 10�3 in this case.

The situation is more interesting when the symmetric modes are considered: writing Eq. (44) in terms of
z ¼ k=kp and rearranging gives

ðz2 � 1Þ 1�
iealōffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðc0=cpÞ
2z2

q þ
ie

ōð1� ðc0=cpÞ
4ō2z4Þ

2
64

3
75� ieapōffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðc0=cpÞ
2z2

q ¼ 0. (45)

If ō ¼ Oð1Þ, the last two terms in the square brackets do not contribute until order e2 and the solution to first
order is still given by Eq. (43) (with 2e replaced by e). If ō ¼ OðeÞ, however, the third term in the square
brackets is Oð1Þ and will contribute at first order in e. Setting ō ¼ O0e gives

z ¼
k

kp

�1þ
e2apO2

0

2½O2
0ð1� ðc0=cpÞ

2
Þ þ 1�

þ
ie2apO3

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðc0=cpÞ

2
q

2½O2
0ð1� ðc0=cpÞ

2
Þ þ 1�

þOðe4Þ. (46)

A comparison of the symmetric wave dispersion curve for a air-backed steel plate in water to that calculated
using the uncoupled equation (37a) with half the fluid loading is shown in Fig. 6. The change in behaviour at
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low frequency caused by the air-backing is most clearly seen in the imaginary part of the wavenumber. It
should be noted that the usual plate theory [1] would give no attenuation for the symmetric wave, due to the
absence of coupling to the fluid, and would have k=kp ¼ 1.
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For completeness, Figs. 5 and 6 also include numerical solutions of the lowest order dispersion curves for an
air-backed, water loaded, steel plate calculated from the full elastic theory using the software Disperse
developed at Imperial College [22,23]. The differences between these curves and those calculated using thin
plate theory, which are most notable for the flexural dispersion curves of Fig. 5, are primarily due to the
neglect of transverse shear through the plate thickness: that thick plate theory must be used to obtain accurate
predictions around the coincidence frequency is well known [1,3]. Nevertheless, thin plate theory predicts the
qualitative physics extremely well and the two theories converge at low frequency. The numerical results for
the symmetric wave in Fig. 6 seem to support the low-frequency behaviour predicted by the coupled relation
(44), though the numerical solution becomes dominated by numerical error as the frequency tends to zero and
starts to predict non-physical negative attenuations for the symmetric wave when ōt0:1.
5. The line driven, fluid loaded, plate

Attention is now turned to the forced response of an air-backed, fluid loaded plate. The force is assumed to
vary only in the x-direction and has the Fourier transform

f ðxÞ ¼
1

2p

Z 1
�1

F ðkÞ eikx dk. (47)

The components of the displacement vector of the mid-plane of the plate are taken to be

uxðxÞ ¼
1

2p

Z 1
�1

UðkÞ eikx dk, (48)

w0ðxÞ ¼
1

2p

Z 1
�1

W ðkÞ eikx dk (49)

and using the wave equation in the fluid, the acoustic pressure in the half-space z4h must have the form

pðx; zÞ ¼
1

2p

Z 1
�1

PðkÞ eikxþibðz�hÞ dk, (50)

with b chosen as in Section 4. Substituting in the plate equations (20) and (21) and using Eq. (22) to guarantee
continuity of the normal displacement at z ¼ h, it is a straightforward matter to solve for P, W and U. They
are given by

P ¼
mF ðkÞ

ibDðk; bÞ
½k4

bðk
2
� k2

pÞ � apō2k2
ðk4
� k4

bÞ � alō2ðk4
� k4

bÞðk
2
� k2

pÞ�, (51)

W ¼
F ðkÞ

2hrc2bDðk;bÞ
ðk2
� k2

pÞ 1�
2im
b
alō2

� �
�

2im
b
apō2k2

� �
(52)

and

U ¼
kgF ðkÞ

2irc2pDðk;bÞ
ðk4
� k4

bÞ �
2im
b

k4
b

� �
. (53)

The denominators, Dðk;bÞ, are as given in Eq. (44).
The far-field acoustic pressure is obtained in the usual way from the saddle point contribution to the integral

in Eq. (50) [1,8]. Taking r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2
p

and y to be the angle from the normal to the plate (z-axis), for
sufficiently large k0r the far-field pressure is given by

pðx; zÞ�
k0

2pr

� �1=2

eik0r�ip
4Pðk0 sin yÞ cos y. (54)

For a discussion of the errors associated with this approximation see Ref. [5].
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If F ðkÞ is assumed to be constant (a line driven plate), the angular intensity in the far field is given by

IðyÞ / jPðk0 sin yÞj2 cos2 y. (55)

A plot of the angular intensity, scaled by its value at y ¼ 0, is given in Fig. 7, showing the peak in the far-field
pressure near the coincidence angle for the symmetric wave, yp. There is also a (much wider) peak near the
coincidence angle for the flexural wave, yb, when ō41. Since jPðk0 sin yÞj ! 1 as both y! yp and y! yb the
ratio of the peaks in the intensity at these points is given simply by cos2 yp=cos2 yb. The peak in the intensity
near yp is very narrow however; by looking near yp for the points where jPðk0 sin yÞj2 is a fraction r of its peak
value one can obtain an estimation of the angular width of this peak. Expanding in terms of e and assuming al

and ap are small, one obtains (after much tedious algebra)

Dy ’
eapō
cos yp

ð1� rÞ1=2

r1=2
þOðe2Þ. (56)

For steel in water Dy ¼ 0:084 when ō ¼ 1:5 if r is taken to be 0.25. Just before the peak in intensity there is a
corresponding drop-out of similar width. One sees that, although the feature in the intensity near yp is
broadband in terms of frequency, the angular width narrows with decreasing frequency making it less obvious
at frequencies well below the coincidence frequency.

The far-field structural response of the plate can be calculated from the Fourier transforms (48) and (49). In
both cases, the branch cut is chosen as in Fig. 4 and the contour of integration is then deformed around the
branch. In doing this a contribution from the poles that have been crossed in deforming the contour is
obtained giving

Plate displacement ¼ 2pi

X
ðResiduesÞ þ

Z
ðBranch cutÞ. (57)

In the far field of the plate, the integral around the branch cut can be approximated using Watson’s Lemma
[21]. In doing this, terms that decay faster than one over a fractional power of x are dropped, hence the only
residue contribution that should be retained is that due to the subsonic (real) root [8].

One notes that, in general, the points k ¼ kb and k ¼ kp do not lie near the branch cut, hence the terms of
order al and ap can be dropped from the integrand. The branch cut contribution to the normal displacement is
thus the same as that given by the inextendable theory, viz.,

w0ðxÞbranch ’ F0

ffiffiffiffiffiffi
k0

2p

r
eik0x�ip

4

2hrc2bmk4
b

1

x3=2
þOðx�5=2Þ. (58)
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only the bending wave contribution, FbðyÞ, plotted as a dashed line.
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To leading order in e, the subsonic pole is the same as before hence the flexural wave contribution is as
calculated previously [8].

The in-plane displacement, ux, is calculated in a similar fashion. Again, because of the approximations
involved in evaluating the branch-cut contribution, the only residue contribution that should be kept is that
resulting from the subsonic pole. Since this is not expected to be near kp, terms involving al and ap can be
dropped and

Residue
k!ks

UðkÞ ¼ Residue
k!ks

kgF 0

2irc2p

ðk4
� k4

bÞ �
2im
b

k4
b

� �

ðk2
� k2

pÞ k4
� k4

b �
im
b

k4
b

� � . (59)

One see that the numerator of Eq. (59) is the dispersion relation for the flexural waves on a fully immersed
fluid loaded plate; if the plate had fluid on both sides there would be no residue contribution from the subsonic
pole but because of the free side the subsonic flexural wave couples to the in-plane displacements. The residue
contribution then depends on the difference in the fluid loading and gives a contribution of the order of the
fluid loading parameter, e, when ō ¼ Oð1Þ.

The branch cut contribution to the normal displacement seems to be a structural acoustic wave caused by
the acoustic near field of the force coupling back into the plate. Of course, the acoustic field can also couple
into symmetric waves on the plate. Assuming kp is not near k0 so that terms involving ap and al can be
dropped, the branch cut contribution to the in-plane displacement is given by

uxðxÞbranch ¼
ieik0x

2p

Z 1
0

Ûðk0 þ isÞe�sx ds, (60)

where

ÛðkÞ ¼
gF 0mbkk4

bðk
4
� k4

bÞ

rc2pðk
2
� k2

pÞðbe2ðk
4
� k4

bÞ
2
þ m2k8

bÞ
(61)

and b has been taken to have its value on the left-hand side of the branch cut. Eq. (60) is in a form suitable for
application of Watson’s Lemma [21] hence, for large x,

uxðxÞbranch ’
igeik0x�ip

4ffiffiffiffiffiffi
2p
p

rc2p

k
3=2
0 ðk

4
0 � k4

bÞF 0

2mk4
bðk

2
0 � k2

pÞx
3=2
þOðx�5=2Þ. (62)

When ō ¼ Oð1Þ, the subsonic residue contribution to the normal displacements of the mid-plane, w0ðxÞ, is
Oð1Þ and dominates the flexural panel response. In the heavy fluid loading region, however, the residue
contribution is OðeÞ [6] and the branch cut contribution (58) is significant. One might then wonder if the
branch cut contribution (62) would also be significant?

The total energy in the panel at frequency o is given by

Etotal ¼ 2h

Z
mid plane

dS
1

2
ro2ðuxu�x þ w0w�0Þ þ

1

2
rc2p

dux

dx

du�x
dx
þ

1

2
rc2b

d2w0

dx2

d2w�0
dx2

� �
. (63)

The first two terms are the kinetic energy of the panel; equating the third term to the tensile energy in the plate
and the fourth term to the flexural energy, one can examine the relative energy in these two contributions.
Using Eqs. (58) and (62) one finds that if all the plate motion were in the branch-cut contributions the ratio of
strain energy per unit area in the in-plane motion to that in the flexural wave is given approximately by

Elong

Eflex
’ g2h2 cp

cb

� �2

k4
0

k4
b

� 1

 !2

k2
0

k2
p

� 1

 !2
as x!1. (64)



ARTICLE IN PRESS
J.D. Smith / Journal of Sound and Vibration 305 (2007) 827–842 841
Since c2b ¼ h2c2p=3 this is an Oð1Þ quantity hence, if the structural acoustic contribution (58) for flexural waves
is considered to be significant for the structural response, the structural acoustic symmetric wave may also
need to be included.

In the heavy fluid loading limit, the residue contributions to the plate displacements can be calculated using
the approximation (41) for the subsonic pole giving

w0ðxÞ ’
�piO3=10

1 F 0

5hrc2bk3
b

eiksx þ
F 0k

1=2
0

2
ffiffiffiffiffiffi
2p
p

mhrc2bk4
b

eik0x�ip
4

x3=2
, (65)

uxðxÞ ’
�pg
5rc2p

O1=10
1 kbF 0

ðk2
b � O1=5

1 k2
pÞ
eiksx þ

igk
3=2
0 ðk

4
� k4

bÞ

2
ffiffiffiffiffiffi
2p
p

rc2pmk4
bðk

2
� k2

pÞ

eik0x�ip
4

x3=2
, (66)

with ō ¼ O1e2, ks ¼ kbO
�1=10
1 and the approximations hold as O1! 0.

6. Thick shell theories

The thin shell theory gives a good qualitative picture of the physics of the fluid loaded plate however for
accurate predictions above the coincidence frequency the effects of through thickness shear must be taken into
account and a thick shell theory used [1]. Many of the thick shell theories used for structural vibration
calculations, such as the Timoshenko–Mindlin plate theory, are based on an expansion of the form [18]

UxðzÞ ¼ u0 � zWu
1 þ z2Wu

2 þ z3Wu
3 þ � � � , (67a)

UyðzÞ ¼ v0 � zWv
2 þ z2Wv

2 þ z3Wv
3 þ � � � , (67b)

UzðzÞ ¼ w0. (67c)

As can be readily seen, expansions of this type still satisfy the Kirchoff–Love approximation and do not give
any coupling between the acoustic fields and the in-plane vibrations. To regain the coupling to symmetric
waves, the assumed form for Uz would have to be modified to include a term of at least order z.

7. Discussion

The preceding sections have shown how the effects of coupling between the in-plane plate vibrations and the
acoustic field can be incorporated into thin plate theory. Although terms of the order of alō2 ¼ k2

l h2 have been
kept for consistency, these terms never give effects at leading order and can be dropped, simplifying the
equations slightly. (In fact al has been used for book keeping—expansions are truncated at the point were al

terms would contribute.) This amounts to dropping the first z dependant term in the continuity equation for
the normal displacement (22). The second term leads to contributions of the form apō2=ðk2

� k2
pÞ. When

k2
� k2

p ¼ Oð1Þ these contributions are of order g2k2
ph2 and would usually be dropped in thin shell theory. For

jkj near kp, however, these terms become large and must be kept.
The coupling of the in-plane (symmetric wave) vibrations into the acoustic field is due to a tensile strain

causing a small change in the thickness of the plate (and vice versa) through the Poisson’s ratio of the material.
Thus any shell theory (thick or thin) that takes inextendability of the normals to the mid-plane as one of its
starting assumptions will not allow any coupling between the symmetric wave and the acoustic field for a flat
plate. Although computing power has increased tremendously over the last few years, the complexity of many
structural acoustic problems of practical interest means that a FE simulation is often performed using shell
elements for the structure. Since many commercial FE codes were originally designed as structural codes, with
the acoustic elements being added later, it is likely that in some codes the shell elements will be based on a shell
theory that does not allow extension of the normals to the mid-plane. Of course on curved structures the
normal displacements of the mid-plane are coupled to the in-plane displacements through curvature terms in
the equation of motion, thus one would not expect to see any differences until the wavelength was much
smaller than the radius of curvature. It is interesting to note that some differences between structural acoustic
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calculations based on three-dimensional FE analysis and those based on shell elements have been observed
[24], though the discrepancies have been conjectured to be caused by the contributions of non-propagating,
higher order, Lamb waves to the boundary conditions at discontinuities.

The coupling between the in-plane vibrations of a plate and the acoustic field is generally small, nevertheless
it can lead to significant effects in certain regimes—such as for a narrow range of angles in the case of the
acoustic field or at very low frequencies in the case of the structural vibrations. These effects add to the
richness of what appears, on the face of it, to be a simple physical system, that of a fluid loaded, forced, flat
plate.
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